Math 280
Summary of Convergence Tests

	Name
	Statement
	Comments

	Divergence Test
(11.2)
	

If  does not exist or if , 

then   diverges.
	

If , then  may or may not converge.

	Geometric Series
(11.2)
	

 is convergent if  and 

               its sum is .   

If  , the series is divergent.
	You can always write out the first few terms to get the first term, a and the common ratio r.

	P-Series
(11.3)
	


 is convergent if  and divergent if .
	
 is called the harmonic series, and diverges  (p = 1)

	Integral Test
(11.3)
	


If is a continuous, positive, decreasing function on such that . Then
(i) 

If  is convergent, then is convergent.
(ii) 

If is divergent, then is divergent.
	This test only applies to series with (eventually) positive terms 


Try this test when  is easy to integrate.

	Comparison Test
(11.4)
	

If and have positive terms




(i)           If is convergent and for all, then is also 
               convergent.




(ii)          If is divergent and for all, then is also 
               divergent.
	This test only applies to series with positive terms 

Try this test as a last resort; other tests are often easier to apply.

Compare to known series like geometric and p-series 

	[bookmark: _GoBack]Limit Comparison Test
(11.4)
	

Suppose and have positive terms 

If  (where c is a finite number), then either both series converge or both diverge.
	This is easier to apply than the comparison test.


When choosing a series for comparison, try the ratio of the leading terms from numerator and denominator.

	Alternating Series Test
(11.5)
	



If the alternating series 	where  satisfies                         and	
then the series converges.
	This test applies only to alternating series.
Check that terms decrease by taking the derivative of the corresponding f(x).
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	Statement
	Comments

	Absolute Convergence
(11.6)
	

If  converges, thenconverges (absolutely).
	
If the series has some negative terms (or sines/cosines), take  and test for absolute convergence.

	Ratio Test
(11.6)
	
Let be a series with non-zero terms and suppose          

                               
i. 
If L < 1, 	the seriesis absolutely convergent.
ii. 

If L > 1 or , then the series  diverges.
iii. If L = 1 , 	the test is inconclusive.  The series may be     
                            convergent or divergent.
	The series does NOT have to have positive terms and does NOT have to be alternating.

Try this test on series with a mix of factorials (n!), nth powers (10n), and powers of  n (n4)

Do not use with p-series or rational/root functions of n   (will yield inconclusive results).

	Root Test
(11.6)
	
Suppose  
i. 
If L < 1, 	then the series  is absolutely convergent.
i. 

If L > 1 or , then the series  diverges .	
ii. If L = 1 , 	the test is inconclusive.  The series may be 
                      convergent or divergent.  

	
Try this test if   has 

the form , and involves nth powers.
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